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Abstract—We address the percolation-based connectivity of
large-scale ad hoc heterogeneous wireless networks, where sec-
ondary users exploit channels temporarily unused by primary
users and the existence of a communication link between two sec-
ondary users depends on not only the distance between them but
also the transmitting and receiving activities of nearby primary
users. We introduce the concept of connectivity region defined as
the set of density pairs—the density of secondary users and the
density of primary transmitters — under which the secondary
network is connected. Using theories and techniques from con-
tinuum percolation, we analytically characterize the connectivity
region of the secondary network and reveal the tradeoff be-
tween proximity (the number of neighbors) and the occurrence
of spectrum opportunities. Specifically, we establish three basic
properties of the connectivity region—contiguity, monotonicity of
the boundary and uniqueness of the infinite connected component,
where the uniqueness implies the occurrence of a phase transition
phenomenon in terms of the almost sure existence of either zero
or one infinite connected component; we identify and analyze
two critical densities which jointly specify the profile as well as
an outer bound on the connectivity region; we study the im-
pacts of secondary users’ transmission power on the connectivity
region and the conditional average degree of a secondary user
and demonstrate that matching the interference ranges of the
primary and the secondary networks maximizes the tolerance of
the secondary network to the primary traffic load. Furthermore,
we establish a necessary condition and a sufficient condition for
connectivity, which lead to an outer bound and an inner bound on
the connectivity region.

Index Terms—Cognitive radio, connectivity region, continuum
percolation, critical densities, heterogeneous wireless network,
phase transition.

I. INTRODUCTION

T HE communication infrastructure is becoming increas-
ingly heterogeneous, with a dynamic composition of in-

terdependent, interactive and hierarchical network components
with different priorities and service requirements. One example
is the cognitive radio technology [1] for opportunistic spectrum
access which adopts a hierarchical structure for resource sharing
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[2]. Specifically, a secondary network is overlaid with a pri-
mary network, where secondary users identify and exploit tem-
porarily and locally unused channels without causing unaccept-
able interference to primary users [2].

A. Connectivity and Connectivity Region

While the connectivity of homogeneous ad hoc networks con-
sisting of peer users has been well studied (see, for example,
[3]–[10]), little is known about the connectivity of heteroge-
neous networks. The problem is fundamentally different from
its counterpart in homogeneous networks. In particular, the con-
nectivity of the low-priority network component depends on the
characteristics (traffic pattern/load, topology, interference toler-
ance, etc.) of the high-priority component, thus creating a much
more diverse and complex design space.

Due to the hierarchical structure of spectrum sharing, a com-
munication link exists between two secondary users if the fol-
lowing two conditions hold: (C1) they are within each other’s
transmission range; (C2) they see a spectrum opportunity de-
termined by the transmitting and receiving activities of nearby
primary users (see Section II-B-I). We say that a topological link
exists between two secondary users if only condition (C1) holds.

Using theories and techniques from continuum percolation,
we analytically characterize the percolation-based connectivity
of the secondary network in a large-scale ad hoc heterogeneous
network. Specifically, we consider a Poisson distributed sec-
ondary network overlaid with a Poisson distributed primary
network in an infinite two-dimensional Euclidean space1. We
define network connectivity as the existence of an infinite
connected component formed by communication links almost
surely (a.s.), i.e., the occurrence of percolation. This connec-
tivity characterizes the accessibility of two secondary users at
a given instant and is thus also called instantaneous mutual
connectivity. Given the transmission power and the interfer-
ence tolerance of both the primary and the secondary users, the
connectivity of the secondary network depends on the density
of secondary users [due to (C1)] and the traffic load of primary
users [due to (C2)].

We thus introduce the concept of connectivity region , de-
fined as the set of density pairs under which the sec-
ondary network is connected, where denotes the density of
the secondary users and the density of primary transmitters
(representing the traffic load of the primary users). As illustrated
in Fig. 1, a secondary network with a density pair in-
side the shaded region is connected: the secondary network has

1This infinite network model is equivalent in distribution to the limit of a
sequence of finite networks with a fixed density as the area of the network in-
creases to infinity, i.e., the so-called extended network [11]. It follows from the
arguments similar to the ones used in [12, Chapter 3] for homogeneous ad hoc
networks that this infinite ad hoc heterogeneous network model represents the
limiting behavior of large-scale networks.
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Fig. 1. Connectivity region � (the upper boundary � �� � is defined as the
supremum density of the primary transmitters that ensures connectivity with a
fixed density of the secondary users; the critical density � of the secondary
users is defined as the infimum density of the secondary users that ensures con-
nectivity under a positive density of the primary transmitters; the critical density
� of the primary transmitters is the supremum density of the primary trans-
mitters that ensures connectivity with a finite density of the secondary users).

a giant connected component which includes infinite number of
secondary users. The existence of the giant connected compo-
nent enables bidirectional communications between distant sec-
ondary users via multihop relaying. On the other hand, a sec-
ondary network with a density pair outside this re-
gion is not connected: the network is separated into an infinite
number of finite connected components. Consequently, any sec-
ondary user can only communicate with users within a limited
range.

It is shown in [13] and [14] that when the primary network is
static, this instantaneous connectivity is equivalent to the con-
nectivity defined in terms of the finiteness of the minimum mul-
tihop delay (referred to as fd-connectivity); when the primary
traffic has temporal dynamics (no matter how small the range
of the dynamics is), this instantaneous connectivity is stronger
than the fd-connectivity and the secondary network can be in-
termittently connected as long as it is topologically connected
[13], [14].

The objective of this paper is to establish analytical charac-
terizations of the connectivity region and to study the impact of
system design parameters (in particular, the transmission power
of the secondary users) on network connectivity. The main re-
sults are summarized in the subsequent two subsections.

B. Analytical Characterizations of the Connectivity Region

We first establish three basic properties of the connectivity re-
gion: contiguity, monotonicity of the boundary and uniqueness
of the infinite connected component. Specifically, based on a
coupling argument, we show that the connectivity region is a
contiguous area bounded below by the -axis and bounded
above by a monotonically increasing function (see
Fig. 1), where the upper boundary is defined as

(1)

with denoting the secondary network of density
overlaid with a primary network specified by the density
of the primary transmitters. The uniqueness of the infinite con-
nected component is established based on ergodic theory and
certain combinatorial results. It shows that once the secondary

network is connected, it contains a unique infinite connected
component a.s.

Second, we identify and analyze two critical parameters of
the connectivity region: and . They jointly specify the
profile as well as an outer bound on the connectivity region. Re-
ferred to as the critical density of the secondary users, is the
infimum density of the secondary users that ensures connectivity
under a positive density of the primary transmitters

(2)
We show that equals the critical density of a homogeneous
ad hoc network (i.e., in the absence of primary users), which
has been well studied [15]. This result shows that the “takeoff”
point in the connectivity region is completely determined by the
effect of proximity—the number of neighbors (nodes within the
transmission range of a secondary user).

Referred to as the critical density of the primary transmitters,
is the supremum density of the primary transmitters that

ensures the connectivity of the secondary network with a finite
density of the secondary users:

(3)
We obtain an upper bound on , which is shown to be achiev-
able in simulations. More importantly, this result shows that
when the density of the primary transmitters is higher than the
(finite) value given by this upper bound, the secondary network
cannot be connected no matter how dense it is. This parameter

thus characterizes the impact of opportunity occurrence
on the connectivity of the secondary network: when the den-
sity of the primary transmitters is beyond a certain level, there
are simply not enough spectrum opportunities for any secondary
network to be connected.

Since a precise characterization of the upper boundary
of the connectivity region is intractable, we establish

a necessary and a sufficient condition for connectivity to pro-
vide an outer and an inner bound on the connectivity region.
The necessary condition is expressed in the form of the condi-
tional average degree of a secondary user and is derived by the
construction of a branching process. The sufficient condition
is obtained by the discretization of the continuum percolation
model into a dependent site percolation model.

C. Impact of Transmission Power on Connectivity: Proximity
Versus Opportunity

The study of the impact of the secondary users’ transmis-
sion power on network connectivity reveals an interesting
tradeoff between proximity and opportunity in the design of
heterogeneous networks. As illustrated in Fig. 2, we show
that increasing enlarges the connectivity region along
the -axis (i.e., better proximity leads to a smaller “takeoff”
point), but at the price of reducing along the -axis.
Specifically, with a large , few secondary users experience
spectrum opportunities due to their large interference footprint
with respect to the primary users. This leads to a poor tolerance
to the primary traffic load parameterized by .

The transmission power of the secondary network should
thus be chosen according to the operating point of the hetero-
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Fig. 2. Simulated connectivity regions for two different transmission powers
(� denotes the transmission power of the secondary users and the large � is
� times the small � , where � is the path-loss exponent).

geneous network given by the density of the secondary users
and the traffic load of the co-existing primary users. Using the
tolerance to the primary traffic load as the performance mea-
sure, we show that the interference range of the secondary
users should be equal to the interference range of the pri-
mary users in order to maximize the upper bound on the critical
density of the primary transmitters. Given the interference
tolerance of the primary and secondary users, we can then de-
sign the optimal transmission power of the secondary users
based on that of the primary users.

D. Related Work

To our best knowledge, the connectivity of large-scale ad hoc
heterogeneous networks has not been characterized analytically
or experimentally in the literature. There are a number of classic
results on the connectivity of homogeneous ad hoc networks.
For example, it has been shown that to ensure either 1-connec-
tivity (there exists a path between any pair of nodes) [3], [4]
or -connectivity (there exist at least node-disjoint paths be-
tween any pair of nodes) [5], the average number of neighbors
of each node must increase with the network size. On the other
hand, to maintain a weaker connectivity—p-connectivity (i.e.,
the probability that any pair of nodes is connected is at least ),
the average number of neighbors is only required to be above a
certain “magic number’ which does not depend on the network
size [6].

The theory of continuum percolation has been used by
Dousse et al. in analyzing the connectivity of a homogeneous
ad hoc network under the worst-case mutual interference [7],
[8]. In [9], [10], the connectivity and the transmission delay in
a homogeneous ad hoc network with static or dynamic on-off
links are investigated from a percolation-based perspective.

In [13] and [14], the impact of temporal dynamics of primary
traffic on the connectivity and multihop delay of the secondary
network is studied. In particular, it is shown that in the presence
of primary traffic dynamics, the secondary network is connected

(either instantaneously or intermittently) as long as it is topolog-
ically connected. Optimal power control in heterogeneous net-
works has been studied in [16], which focuses on a single pair of
secondary users in a Poisson network of primary users. The im-
pacts of secondary users’ transmission power on the occurrence
of spectrum opportunities and the reliability of opportunity de-
tection are analytically characterized.

E. Organization and Notations

The rest of this paper is organized as follows. Section II
presents the Poisson model of the heterogeneous network. In
particular, the conditions for the existence of a communication
link in the secondary network is specified based on a rigorous
definition of spectrum opportunity. In Section III, we introduce
the concept of connectivity region and establish its three basic
properties. The two critical densities are analyzed, followed
by a necessary and a sufficient condition for connectivity. In
Section IV, we demonstrate the tradeoff between proximity
and opportunity by studying the impact of the secondary users’
transmission power on the connectivity region and on the
conditional degree of a secondary user. Further, we obtain the
optimal transmission power of the secondary users, adopting
the secondary network’s tolerance of the primary traffic load as
the performance measure. Section V contains detailed proofs
of the main results and Section VI concludes the paper.

Throughout the paper, we use capital letters for parameters
of the primary users and lowercase letters for those of the sec-
ondary users.

II. NETWORK MODEL

We consider a Poisson distributed secondary network over-
laid with a Poisson distributed primary network in an infinite
two-dimensional Euclidean space. The models of the primary
and secondary networks are specified in the following two sub-
sections.

A. The Primary Network

The primary transmitters are distributed according to a two-
dimensional Poisson point process with density . Each pri-
mary transmitter’s receiver is uniformly distributed within its
transmission range . Here we have assumed that all primary
transmitters use the same transmission power and the trans-
mitted signals undergo isotropic path loss. Based on the dis-
placement theorem [17, Chapter 5], it is easy to see that the pri-
mary receivers form a two-dimensional Poisson point process
with density . Note that the two Poisson processes formed
by the primary transmitters and receivers are correlated.

B. The Secondary Network

The secondary users are distributed according to a two-di-
mensional Poisson point process with density , independent
of the Poisson processes of the primary transmitters and re-
ceivers. The transmission range of the secondary users is de-
noted by .

Communication Links: In contrast to the case in a homoge-
neous network, the existence of a communication link between
two secondary users depends on not only the distance between
them but also the availability of the communication channel
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Fig. 3. Definition of spectrum opportunity.

(i.e., the presence of a spectrum opportunity). The latter is deter-
mined by the transmitting and receiving activities in the primary
network as described below.

As illustrated in Fig. 3, there exists an opportunity from ,
the secondary transmitter, to , the secondary receiver, if the
transmission from does not interfere with nearby primary re-
ceivers in the solid circle and the reception at is not affected
by nearby primary transmitters in the dashed circle [18]. Re-
ferred to as the interference range of the secondary users, the
radius of the solid circle at depends on the transmission
power of and the interference tolerance of the primary re-
ceivers, whereas the radius of the dashed circle (the interfer-
ence range of the primary users2) depends on the transmission
power of the primary users and the interference tolerance of .

It is clear from the above discussion that spectrum opportuni-
ties depend on both transmitting and receiving activities of the
primary users. Furthermore, spectrum opportunities are asym-
metric. Specifically, a channel that is an opportunity when
is the transmitter and the receiver may not be an opportu-
nity when is the transmitter and the receiver. In other
words, there exist unidirectional communication links in the
secondary network. Since unidirectional links are difficult to uti-
lize in wireless networks [19], we only consider bidirectional
links in the secondary network when we define connectivity. As
a consequence, when we determine whether there exists a com-
munication link between two secondary users, we need to check
the existence of spectrum opportunities in both directions.

To summarize, under the disk signal propagation and inter-
ference model, there is a (bidirectional) link between and
if and only if (C1) the distance between and is at most ;
(C2) there exists a bidirectional spectrum opportunity between

and , i.e., there are no primary transmitters within distance
of either or and no primary receivers within distance

of either or .
Connectivity: We interpret the connectivity of the secondary

network in the percolation sense: the secondary network is con-
nected if there exists an infinite connected component a.s.

Based on the above conditions (C1, C2) for the existence of a
communication link, we can obtain an undirected random graph

corresponding to the secondary network, which
is determined by three Poisson point processes: the secondary

2Since the minimum transmission power for successful reception is, in gen-
eral, higher than the maximum allowable interference power, it follows that the
transmission range� of primary users is smaller than � . Furthermore, under
the disk signal propagation and interference model, we have � � �� �� �
� � ��. A similar relationship holds for � and � .

Fig. 4. Realization of the heterogeneous network. The random graph
��� � � � consists of all the secondary nodes and all the bidirectional links
denoted by solid lines. The solid circles with radii � denote the interference
regions of the primary transmitters within which secondary users cannot
successfully receive and the dashed circles with radii � denote the required
protection regions for the primary receivers within which the secondary users
should refrain from transmitting.

users with density , the primary transmitters with density
and the primary receivers with density (correlated

with the process of the primary transmitters)3. See Fig. 4 for an
illustration of .

The question we aim to answer in this paper is: when is the
secondary network connected, i.e., when does percolation occur
in ?

III. ANALYTICAL CHARACTERIZATIONS OF THE

CONNECTIVITY REGION

Given the transmission power and the interference tolerance
of both the primary and the secondary users (i.e., , ,
and are fixed), the connectivity of the secondary network is
determined by the density of the secondary users and the
density of the primary transmitters. We thus introduce the
concept of connectivity region of a secondary network, which
is defined as the set of density pairs under which the
secondary network is connected (see Fig. 1)

A. Basic Properties of the Connectivity Region

We next establish three basic properties of the connectivity
region.

Theorem 1: Basic Properties of the Connectivity Region.
T1.1 The connectivity region is contiguous, that is, for
any two points , , there exists
a continuous path in connecting the two points.
T1.2 The lower boundary of the connectivity region is
the -axis. Let denote the upper boundary of
the connectivity region defined by (1), then we have that

is monotonically increasing with .

3The two Poisson point processes of the primary transmitters and receivers
are essentially a snap shot of the realizations of the primary transmitters and
receivers. In different time slots, different sets of primary users become active
transmitters/receivers. Thus, even if a secondary user is isolated at one time due
to the absence of spectrum opportunities, it may experience an opportunity at a
different time and be connected to other secondary users.
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Fig. 5. Two realizations of the Poisson heterogeneous network (black stars denote primary transmitters, green plus signs denote primary receivers, red dots denote
secondary users and blue segments denote the bidirectional links between secondary users). We have removed secondary users who do not see opportunities for
clarity. The simulation parameters are given by � � �� �, � � �� �, � � ��� �� , � � �� �, � � �� � and the critical density in this case is
� ���	 � �
� �� (a) percolation occurs �� � �� �� 	 (b) percolation does not occur �� � �� �� 	.

T1.3 There exists either zero or one infinite connected com-
ponent in a.s.
Proof: The proofs of T1.1 and T1.2 are based on the

coupling argument, a technique frequently used in continuum
percolation [15, Section 2.2]. The proof of T1.3 is based on
the ergodicity of the random model driven by the three Poisson
point processes of the primary transmitters, the primary re-
ceivers and the secondary users. The details of the proofs are
given in Section V-B.

T1.1 and T1.2 specify the basic structure of the connectivity
region, as illustrated in Fig. 1. T1.3 implies the occurrence of a
phase transition phenomenon, that is, there exists either a unique
infinite connected component a.s. or no infinite connected com-
ponent a.s. This uniqueness of the infinite connected component
excludes the undesirable possibility of having more than one
(maybe infinite) infinite connected component in the secondary
network. We point out that such a property is not always present
in wireless networks. Two examples where more than one infi-
nite connected component exists in a homogeneous ad hoc net-
work can be found in [20].

B. Critical Densities

In this subsection, we study the critical density of the sec-
ondary users and the critical density of the primary trans-
mitters defined by (2) and (3), respectively. We have the fol-
lowing theorem.

Theorem 2: Critical Densities.
Given , , and , we have:

T2.1 , where is the critical density for
a homogeneous ad hoc network with transmission range
(i.e., in the absence of the primary network).
T2.2

(4)

where the constant is the critical density for a homo-
geneous ad hoc network with a unit transmission range.

Proof: The basic idea of the proof of T2.1 is to approximate
the secondary network by a discrete edge-percola-
tion model on the grid. This discretization technique is often
used to convert a continuum percolation model to a discrete
site/edge percolation model (see, for example, [15, Chapter 3],
[8]). The details of the proof are given in Section V-C-I.

The proof of T2.2 is based on the argument that if there is an
infinite connected component in the secondary network, then an
infinite vacant component must exist in the two Poisson Boolean
models driven by the primary transmitters and the primary re-
ceivers, respectively. The key point is to carefully choose the
radii of the two Poisson Boolean models in order to obtain a
valid upper bound on . The details of the proof can be found
in Section V-C-II.

Fig. 5(a) shows one realization of the heterogeneous network
when is slightly larger than and is small. At least
one left-to-right (L-R) crossing and at least one top-to-bottom
(T-B) crossing can be found in the square network. It is thus
expected that these L-R and T-B crossings in finite square re-
gions can form an infinite connected component in the whole
network on . If we slightly increase , then we observe
from Fig. 5(b) that the reduction in spectrum opportunities elim-
inates numerous communication links in the secondary network,
creating several disjoint small components.

Fig. 6 shows a simulation example of the connectivity region,
where the upper bound on the critical density of the pri-
mary transmitters given in T2.2 appears to be achievable.

C. A Necessary Condition for Connectivity

In this subsection, we establish a necessary condition for con-
nectivity which is given in terms of the average conditional de-
gree of a secondary user. This condition agrees with our intu-
ition: the secondary network cannot be connected if the degree
of every secondary user is small.

Let denote the event that there exist primary re-
ceivers/transmitters within distance of a secondary user . Let

denote the complement of . Since a
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Fig. 6. Simulated connectivity regions when � � ��� �, � � ��� �,
� � ���� and� � ����. The blue dashed line is the upper bound (4) on
the critical density � of primary transmitters given in T2.2. The area of the
simulated heterogeneous network is �����������. For a fixed density �
of the secondary users, the upper boundary � �� 	 is equal to the minimum
density of the primary transmitters such that over all the 1000 realizations, the
percentage of the ones in which there exists at least one L-R crossing is below
50%. The intuitive reason for choosing the existence of an L-R crossing as the
criterion for connectivity is illustrated in Fig. 5 and is discussed in Section V-C.

secondary user is isolated if it does not see a spectrum opportu-
nity, we focus on secondary users who experience spectrum op-
portunities and define the conditional average degree of such
a secondary user as

(5)

where denotes the degree of , the interference range
of the secondary users and the interference range of the pri-
mary users. Notice that the degree of is the number of sec-
ondary users within the transmission range of and experi-
encing bidirectional opportunities with . We arrive at the fol-
lowing necessary condition for connectivity.

Theorem 3: A necessary condition for the connectivity of
is , where is the conditional average degree

of a secondary user defined in (5).
Proof: The basic idea is to construct a branching process,

where the conditional average degree is the average number of
offspring. This branching process provides an upper bound on
the number of secondary users in a connected component. If
, then the branching process is finite a.s. It thus follows that

there is no infinite connected component a.s. in .
Details can be found in Section V-D.

To apply the necessary condition given in Theorem 3, the
conditional average degree of a secondary user needs to
be evaluated based on the network parameters. Let be a sec-
ondary user randomly and uniformly distributed within trans-
mission range of . Let denote the
probability of a bidirectional opportunity between and con-
ditioned on the event that sees an opportunity. Based on the
statistical equivalence and independence of different points in
a Poisson point process, the conditional average degree of a
secondary user is given by this conditional probability of
a bidirectional opportunity between and a randomly chosen

neighbor multiplied by the average number of neighbors of ,
i.e.,

(6)

The detailed derivation of (6) and an expression for are
given in Appendix A. It is also shown in Appendix A that is
a strictly decreasing function of . Thus , the inverse
of with respect to , is well-defined.

Combining (6) with Theorem 3, we obtain an outer bound on
the connectivity region. Specifically, let denote the
conditional average degree of a secondary user in .
Then those density pairs satisfying
are outside the connectivity region.

Corollary 1: Given , , and , an outer bound on the
connectivity region is given by

where is the inverse of the conditional probability
with respect to .

D. A Sufficient Condition for Connectivity

In this subsection, we establish a sufficient condition for con-
nectivity, which provides an inner bound on the connectivity re-
gion and a criterion for checking whether a secondary network
is connected.

Our sufficient condition for connectivity is established by
using the discretization technique. The continuum percolation
model is mapped onto a dependent site-percolation model
in the following way. As illustrated in Fig. 7, we partition
into (dashed) squares with side length and locate a site at the
center of each square. Sites whose associated dashed squares
share at least one common point are considered connected (as
illustrated by solid lines in Fig. 7). Thus, each site is connected
to eight neighbors4 (see the eight neighbors of site

in Fig. 7). Let be the associated dashed square of , then
is occupied if there exists in at least one secondary user

who sees an opportunity.
Since the largest distance between two points in two neigh-

boring dashed squares is , it follows that if we set
, then every pair of secondary users in two neighboring

dashed squares are within transmission range of each other.
Based on the definitions of occupied site in and communi-
cation link in the secondary network, we conclude that the ex-
istence of an infinite occupied component (a connected compo-
nent consisting of only occupied sites) in implies the existence
of an infinite connected component in the secondary network.

Due to the fact that spectrum opportunities are spatially de-
pendent, the state of one site is correlated with the states of its
adjacent sites. Thus, the above site-percolation model is a de-
pendent model. Define the dependence range as the minimum
distance such that the state of any two sites at distance larger
than are independent, where the distance between two sites

4For the commonly used square site-percolation model, each site has four
neighbors. The site-percolation model constructed here provides a better inner
bound.
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Fig. 7. Illustration of the dependent site-percolation model � with side length
� (solid dots denote sites, solid lines denote edges connecting every two sites
and dashed lines denote the squared partition).

is the minimum number of neighboring sites that must be tra-
versed from one site to the other. Then the dependence range of

is given by

(7)

Let denote the upper critical probability of which is de-
fined as the minimum probability of occupancy such that if
the probability of occupancy , an infinite occupied com-
ponent containing the origin exists in with a positive prob-
ability (wpp.). Since the dependence range of is finite, it
follows from [12, Theorem 2.3.1] that . Now we present
a sufficient condition for connectivity in the following theorem.

Theorem 4: Let denote the upper critical probability of the
dependent site-percolation model specified above. Define

(8)

where is the common area of two circles with radii
and and centers apart. Then the secondary network is

connected if the equation shown at the bottom of the page holds.

Proof: The proof is based on the ergodicity of the hetero-
geneous network model and its relation with the constructed
dependent site-percolation model . Details can be found in
Section V-E.

By applying a general upper bound on the upper critical prob-
ability for a site-percolation model with finite dependence
range [12, Theorem 2.3.1], we arrive at the following corollary.

Corollary 2: A sufficient condition for the connectivity of
is

where is defined in (8) and is the dependence
range of the site-percolation model defined in (7).

IV. IMPACT OF TRANSMISSION POWER: PROXIMITY

VERSUS OPPORTUNITY

In this section, we study the impact of the secondary users’
transmission power on the connectivity and the conditional av-
erage degree of the secondary network. As has been illustrated
in Fig. 2, there exists a tradeoff between proximity and oppor-
tunity in designing the secondary users’ transmission power for
connectivity. Specifically, increasing the transmission power of
the secondary users leads to a smaller critical density of the
secondary users, but at the same time, a lower tolerance to the
primary traffic load manifested by a smaller critical density
of the primary transmitters.

A. Impact on the Conditional Average Degree

As discussed in Section III-C, the expression for the condi-
tional average degree can be decomposed into the product
of two terms: and . The first
term is the average number of neighbors of a secondary
user, which increases with the transmission power of the
secondary users (i.e., enhanced proximity). The other term

is the conditional probability of a bidi-
rectional opportunity, which decreases with due to reduced
spectrum opportunities. This tension between proximity and
opportunity is illustrated in Fig. 8, where we observe that
the impact of on proximity dominates when is small
( increases with ) while its impact on the occurrence of
opportunities dominates when is large ( decreases with

).

Corollary 3: Let be the transmission power of secondary
users and the conditional average degree defined in (5), then
under the disk signal propagation and interference model we
have5

where is the path-loss exponent.
Proof: We show this corollary by deriving an upper bound

on . Details can be found in Appendix B.

5Here we use the Big O notation: ���� � ������� as ���� if and only if
�� � �, � � � such that ������ � � ������ for all � � � .
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Fig. 8. Conditional average degree � of secondary users vs transmission range
� of secondary users. � � �� � , where � is the transmission power of
secondary users and � is the path-loss exponent and simulation parameters are
given by � � ��� �� , � � ��� �, � � ��� �, � � �� �� ,
� � � ���	.

For a homogeneous network, the average degree of a user is
, which increases with at rate . In sharp con-

trast, this corollary tells us that for a heterogeneous network,
when is large enough, the conditional average degree of
a secondary user actually decreases with at least as fast as

.

B. Impact on the Connectivity Region

From the scaling relation of the critical density [15, Propo-
sition 2.11], we know that in a homogeneous two-dimensional
network

where the constant is the critical density for a homoge-
neous ad hoc network with a unit transmission range. Thus,
if each secondary user adopts a high transmission power, then

decreases. It follows from T2.1 that the critical den-
sity of secondary users required to achieve connectivity de-
creases due to the enhanced proximity.

On the other hand, from the upper bound on the critical den-
sity of the primary transmitters given in T2.2, we have that

where we have assumed that for some
under the disk signal propagation and interference model. Thus,
when the transmission power of the secondary network is
large enough, the critical density of the primary transmit-
ters decreases with at least as fast as due to re-
duced spectrum opportunities.

C. Optimal Design of Transmission Power

Due to the tension between proximity and opportunity, there
does not exist a transmission power of the secondary users that

Fig. 9. Example of the upper bound on � as a function of � (parameters
are given by � � 
�� �, � � ������ ).

leads to the “largest” connectivity region (largest in the sense
that its connectivity region contains all regions achievable with
any finite transmission power of the secondary users). Thus,
the optimal design of depends on the operating point of the
heterogeneous network. For instance, when a sparse secondary
network is overlaid with a primary network with low traffic load,
a large may be desirable to achieve connectivity. The oppo-
site holds when a dense secondary network is overlaid with a
primary network with high traffic load.

Focusing on a secondary network whose density exceeds the
critical density of the secondary users, we address the design
of its transmission power for the maximum tolerance to the pri-
mary traffic. Due to its tractability and achievability, the upper
bound on the critical density of the primary transmitters
given in T2.2 is used as the performance measure (see Fig. 6 for
a simulation example).

Theorem 5: Let and denote the interference range of
the secondary and the primary users. For a fixed , the upper
bound on given in T2.2 is maximized when the primary and
secondary networks have matching interference ranges:

.
Proof: Since under the disk signal propagation and inter-

ference model, for some , the upper bound
on can be written as

for

for .

Then the above theorem can be readily shown by finding the
maximal point for the two cases: and .

An example of the upper bound on is plotted as a func-
tion of in Fig. 9. Notice that there is a distinct difference
in the slope on the two sides of the optimal point. As a conse-
quence, the operating region of is preferred over that of

when the optimal point cannot be achieved.
We point out that the desired operating region of is the
typical case of a secondary network coexisting with a privileged
primary network.
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V. PROOFS

In this section, we present proofs of the main results presented
in Sections III–IV. We start with a brief overview of several
basic results in percolation theory that will be used in the proofs.

A. Percolation Theory: Some Basic Results

Poisson Boolean Model: Poisson Boolean model [15], often
referred to as , is specified by two elements: a
Poisson point process on with density and a radius ,
a random variable with a given distribution. Under this model,
each point in is the center of a ball in with a random
radius distributed according to the distribution of . Radii asso-
ciated with different points are independent and they are also
independent of points in . Under a Poisson Boolean model,
the whole space is partitioned into two regions: the occupied
region, which is the region covered by at least one ball and the
vacant region, which is the complement of the occupied region.
We define occupied (vacant) components as those connected
components in the occupied (vacant) region.

Assume that nodes in a homogeneous ad hoc network form
a Poisson point process with density and their transmission
range is . It is easy to see that the connectivity of this network
can be studied through examination of the occupied connected
components in the corresponding Poisson Boolean model

.
Sharp Transition in Two Dimensions: For the Poisson

Boolean model in two dimensions, the sharp transition phe-
nomenon is remarkable in the sense that the critical density
for the a.s. existence of infinite occupied components is equal
to that for the a.s. existence of infinite vacant components.
Let denote the critical density for the Poisson Boolean
model , then we have that:

• when , there is no infinite occupied component
a.s. and there is a unique infinite vacant component a.s.;

• when , there is a unique infinite occupied com-
ponent a.s. and there is no infinite vacant component a.s.

The exact value of is not known. For a deterministic radius ,
simulation results [21] indicate that , while
rigorous bounds are provided
in [15] and [22].

Crossing Probabilities: A continuous curve in the occupied
region is called an occupied path. An occupied path is an oc-
cupied L-R crossing of the rectangle

if intersects both the left and the right boundaries
of the rectangle, i.e., ,

and the segment between
the two intersecting points is fully contained in the rectangle.
Similarly, we define an occupied T-B crossing by requiring that

intersects with the top and bottom boundaries of the rectangle.
Let

Fig. 10. Continuous path connecting the two points �� � � �
and �� � � � in the connectivity region �. (a) � � � .
(b) � � � .

denote the two crossing probabilities in the rectangle
. Then for a Poisson Boolean model in two

dimensions with a.s. bounded , we have [15, Corollary 4.1]
that for any

if
if .

(9)

Due to the symmetry of the Poisson Boolean model,
similar results hold for the T-B crossing probability

.

B. Proof of Theorem 1

Proof of T1.1: To prove T1.1, it suffices to show that for any
two given points and in , we can find
a path in that connects these two points. In particular, the path
we constructed is given by a horizontal segment and a vertical
segment as shown in Fig. 10, where we assume, without loss of
generality, that .

Consider case (a) in Fig. 10 where . Case
(b) can be proven similarly. First, we show every point

on the horizontal segment be-
longs to . Let . A Poisson point process with
density is statistically equivalent to the superposition of a
Poisson point process with density and an independent
Poisson point process with density . It follows that any
realization of the heterogeneous network with densities and

can be generated by adding more secondary nodes to a
realization of the heterogeneous network with densities and

. Thus, the existence of an infinite connected component
in implies the existence of an infinite connected
component in . We thus have that
for .

Now we know that the two end points and
of the vertical segment belong to . For a point

on the vertical segment,
let , then any realization of the heteroge-
neous network with densities and can be obtained
by independently removing each primary transmitter-receiver
pair with probability from a realization of the het-
erogeneous network with densities and . It follows
from the definition of communication link in the secondary
network (see Section II-B-I) that the existence of an infinite
connected component in implies the existence
of an infinite connected component in . Thus, we
have .
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Proof of Theorem 1.2: Suppose that
, then by using the coupling argument for showing that the ver-

tical segment belongs to in the above proof of T1.1, we con-
clude that , i.e., the -axis is the lower boundary
of .

Suppose that . In order to prove the mono-
tonicity of with it suffices to show that ,
if then . This is a direct conse-
quence of the coupling argument for showing that the horizontal
segment belongs to in the above proof of T1.1.

Proof of Theorem 1.3: We first establish the ergodicity6 of
the heterogeneous network model.

Lemma 1: The heterogeneous network model is ergodic.
Proof of Lemma 1: The proof of this lemma is inspired

by the proof of the ergodicity of the Poisson Boolean model
[15, Proposition 2.8]. The difficulty here is that for the hetero-
geneous network model, we have two correlated Poisson point
processes: the primary transmitters and the primary receivers.
The definition of the shift transformation for the primary net-
work model is thus more complicated than the standard Poisson
Boolean model with a deterministic radius . To prove Lemma
1, we first show the ergodicity of the primary network model
and then we show the mixing property7 of the secondary net-
work model. Since the primary network model is independent
of the secondary network model, it follows from [24, Theorem
2.6.1] that the heterogeneous network model is ergodic.

Let denote the Borel -algebra in and the set of all

simple counting measures8 on . Construct a -algebra
for generated by sets of the form

where and is an integer. A point process can now
be defined as a measurable mapping from a probability space

into [23, Chapter 7]. The measure on
induced by is defined as , for all

.
In order to define the shift transformation on , it is conve-

nient to identify with . Let denote the

number of points in , and be the shift
according to a vector . Then induces a shift transfor-
mation through the following equation for every

:

(10)

6A measure preserving (m.p.) dynamical system ��� � �� � � consists of

a set �, a �-algebra of measurable subsets of �, a nonnegative measure

� on ��� � and an invertible m.p. transformation � � ���� such that

��� � � � ��� � for all � � . A set � � is said to be T-invariant if

� � � � . The m.p. dynamical system ��� � �� � � is said to be ergodic
if the �-algebra of T-invariant sets is trivial, i.e., for any invariant set, either it
has measure 0 or its complement has measure 0.

7An m.p. dynamical system ��� � �� � � is said to be mixing if for all

�� � � , ���
��

��� � � � � � ��������.

8A simple counting measure on is an integer-valued measure for which
the measures of bounded Borel sets are all finite and the measure of a point is
at most 1.

Let be the probability space of
the Poisson point process for the primary transmit-
ters with density . Let be the product space

for the primary receivers, where
. Then we equip with

the usual product -algebra and product measure with all
marginal probability measure being , where is a uniform
probability measure on . Finally, we set
and equip with the product measure and
the usual product -algebra. It follows that the primary network
model is a measurable mapping from into
defined by , where is
specified in the definition of the point process.

The positions of the primary transmitters corresponding to
are easily known from .

For the primary receivers, the positions are obtained as follows.
Consider binary cubes

For each primary transmitter , there exists a unique smallest
integer such that it is contained in a binary cube

which contains no other primary transmit-
ters. The relative position of ’s receiver with respect to
is then given by .

Let , denote the unit vectors in , then the translation
defined by induces a shift

transformation on through the equation

Hence also induces a shift transformation on
as follows:

where is defined in (10). By using techniques similar to the
proof of Boolean models [15, Proposition 2.8], we have that the
m.p. dynamical system is ergodic.

Since the transmission range of secondary users is fixed,
the probability space of the secondary network model is the
probability space for the Poisson point process

of secondary users with density . It follows from the
proof of Poisson point processes [15, Proposition 2.6] that the
m.p. dynamical system is mixing.

Since the primary network model is independent of the sec-
ondary network model, the sample space of the heterogeneous
network model can be written as the product of and ,
i.e., . We equip with product measure

and the usual product -algebra. Similarly, the trans-
lation induces a transformation on

, which is given by

Then it follows from [24, Theorem 2.6.1] that the product m.p.
dynamical system is ergodic. Since the -al-
gebra invariant under the transformation group
is a subset of the -algebra invariant under the transformation
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, we conclude that acts ergodically, i.e., the
heterogeneous network model is ergodic.

Based on Lemma 1, we have the following lemma.

Lemma 2: The number of infinite connected component in
is a constant a.s. and it can only take value from

.
Proof of Lemma 2: Let denote the (random) number of

infinite connected components in , then since for all
, the event is invariant under the group of shift

transformations, it follows from Lemma 1 and the definition of
ergodicity that or 1. Consequently, we have
that is a.s. constant. Then it suffices to exclude the possibility
of . This is shown by contradiction, that is, if there exist

infinite connected components, then they can be linked
together as one connected component wpp. The proof is inspired
by the proof of Proposition 3.3 in [15] and a major difference is
that here we need to consider the impact of the primary network
on the connectivity of the secondary network.

Suppose that there are infinite connected components
a.s. If we remove all the secondary nodes centered inside a box

, then the resulting secondary network should
contain at least unbounded components a.s. Let, for ,

denote the graph formed by secondary nodes in . Given
a box and , consider the event shown at the
bottom of the page.

Partition the box into squares with side length
and let denote the collection of all the
squares which are adjacent to the boundary of . Clearly, for
a box and , we can find
and such that for any point with

, there exists a square
for which we have . This means that,
if we center in each square of a secondary node and there
are neither primary transmitters nor primary receivers within a
bigger box , then
every infinite component in with is
connected to some secondary node in .

Let be the event that each square in contains at
least one secondary node and the event that there are nei-
ther primary transmitters nor primary receivers within . Since

depends on the configuration of secondary nodes inside
the box , depends on the configuration of secondary
nodes outside and the configuration of primary nodes, based
on the independence of the primary network and the secondary
network, we have

If , and all occur wpp., then there is
only one infinite connected component9 wpp. By using argu-
ments similar to the proof for [15, Proposition 3.3], we have
that there exists a large enough box and such that

. Obviously, . Moreover, it
is easy to see that .

Now we have that the number of infinite connected com-
ponents is equal to zero, one or infinity a.s. To exclude the pos-
sibility of , we can use the proof of [15, Theorem 3.6]
for Poisson Boolean models, which is based on several combi-
natorial results. The details are omitted.

C. Proof of Theorem 2

Proof of T2.1: To prove T2.1, it suffices to show that:
(a) for any , the secondary network is not con-

nected for any ;
(b) for any , there exists a

such that , the secondary network is
connected.

From Section IV-A, we know that for a Poisson homogeneous
ad hoc network with density and transmission range , the nec-
essary and sufficient condition for connectivity is .
Since the existence of an infinite connected component in the
secondary network implies the existence of an infinite connected
component in the homogeneous ad hoc network with the same
density and the same transmission range, by using a coupling
argument, we conclude that when , there does not
exist an infinite connected component a.s. in the secondary net-
work for any . This proves part (a).

The basic idea of the proof of part (b) is to approximate the
secondary network by a discrete dependent edge-
percolation model on the grid. This discrete dependent edge-
percolation model is constructed in a way such that the exis-
tence of an infinite connected component in implies the exis-
tence of an infinite connected component in .

Construct the square lattice on with side length . Note
that each site in is virtual and is not related to any node either
in the secondary network or in the primary network. Next we
specify the conditions for an edge being open in , which is the
key to the mapping from to .

For each edge in , let denote the middle point of .
Then we introduce three random fields , and , all asso-
ciated with the edge in , where is the indicator
of the edge being open, represents the condition (C1) of
the distance between two users for the existence of a commu-
nication link in the secondary network and represents the
condition (C2) of the spectrum opportunity. Specifically, con-
sider the Poisson Boolean model where

9Since � � � �
�
�, every secondary node in a square of � is connected to

those secondary nodes in the neighboring squares.
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Fig. 11. Realization where � � � for the edge � (hollow points are sites in
� and solid segments are edges in �).

is the Poisson point process generated by secondary users, then
for a horizontal edge , if the following two events (il-
lustrated in Fig. 11) are true:

(i) there is an occupied L-R crossing of the rectangle
in

;
(ii) there are two occupied T-B crossings of the square

and the square
in

; and otherwise. For a vertical
edge , the definition of is similar, where the horizontal
and vertical coordinates are switched in the above two
events.

Next, we define the random field . For an edge in ,
if and the following two events are true:

(i) there is no primary transmitter within distance of any
secondary node of the three crossings in the definition of

;
(ii) there is no primary receiver within distance of any sec-

ondary node of the three crossings in the definition of ;
and otherwise. It follows from the definition of com-
munication link in the secondary network (see Section II-B-I)
that if and , then the three crossings in

are also three crossings in .
Let , then we claim that the edge is open if

and is closed if . We observe from Fig. 11
that whether the edge is open is correlated with the states of
the other edges. This model thus is a dependent edge-perco-
lation model. Furthermore, as shown in Fig. 12, if there exists
an infinite open connected component in , then those cross-
ings associated with the edges in the infinite component in
comprise an infinite connected component in . As a
consequence, by considering the uniqueness of the infinite con-
nected component in , we only need to prove the
following lemma in order to show T2.1.

Lemma 3: Let denote the open connected component
containing the origin in . Then given ,
, such that for and any , we have

where is the number of edges in .

Fig. 12. Percolation in � (thick segments are open edges in � and thin seg-
ments are closed edges in� and blue curves are those crossings associated with
the open edges).

Proof of Lemma 3: For an arbitrary edge in , let
, then we have

From the result on the crossing probabilities given in (9), we
know that when ,

Thus, when , , such that
for .

Given , let be the area of the region covered by
the circles with radii centered at those secondary nodes in
the three crossings and be the area of the region covered by
the circles with radii centered at those secondary nodes in the
three crossings. Then we have

Since and
, it follows from

the basic property of Poisson point processes that
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Obviously, for fixed .

Thus if we choose , then , such that

It implies that when , for all

Thus, for and all , we have

(11)

From Fig. 11, we can see that if
, then the state of edge is only correlated with its six ad-

jacent edges and it is independent of other edges. In this case,
by using the “Peierls argument” [25, Chapter 1], we can show

that if the probability of an edge being closed ,
then

(12)

The proof of the above statement follows the one of [7, Theorem
3] except that the upper bound on the probability of edges all
being closed is given by the following fact.

Fact 1: [8, Proposition 1]: For any collection of
distinct edges in , we have

where is the indicator of being closed, and is the prob-
ability of an edge being closed.

Thus, by combining (12) with (11), we conclude that given
, , such that for fixed

and any

Notice that depends on which is chosen according to the
crossing probability and is determined by . As a consequence,

is a function of , i.e., .
Proof of T2.2: From the conditions for the existence of

a communication link in the secondary network specified in
Section II-B-I, we know that for every secondary node in an in-
finite connected component, there can exist neither any primary
transmitter within distance of it nor any primary receiver
within distance of it. In other words, every secondary node
in an infinite connected component must be located outside
all the circles centered at the primary transmitters and the
primary receivers with radii and , respectively. Thus,
if there is an infinite connected component in the secondary
network, then an infinite vacant component must exist in
the two Poisson Boolean models and

driven by the primary transmitters and
the primary receivers, respectively. Here and are

Fig. 13. Counterexample for choosing � � � . All the secondary nodes
in the infinite path are located outside those circles centered at the primary
transmitters with radii � , which form a series of rings surrounding the origin
� and there is no infinite vacant component in the Poisson Boolean model
��� � � � � � driven by the primary transmitters.

Fig. 14. Infinite path in the secondary network. The dashed segments form an
inner bound on the infinite vacant component in the Poisson Boolean model
driven by the primary receivers.

some appropriate radii which will be specified later. A natural
choice for is , but if we consider the counterexample
given in Fig. 13, then we can clearly see that even if there is an
infinite path in the secondary network, no infinite vacant com-
ponent exists in the Poisson Boolean model
driven by the primary transmitters. Similarly, counterexamples
can be easily constructed for choosing .

Suppose there is an infinite connected component in the sec-
ondary network. Then we can find a sequence of secondary
users such that they comprise an infinite path
starting from (see Fig. 14).

Assume that and are two adjacent secondary
nodes in the above infinite path. Notice that the distance
between and satisfies , where the
second inequality follows from the fact that the min-
imum transmission power for successful reception is in general
higher than the maximum allowable interference power.

As we know, all the primary receivers must be outside the
two circles with radii centered at and , respectively,
as shown in Fig. 15. Given , consider the rectangle

between and . By a
simple computation in geometry, we have that the minimum
distance from all the primary receivers to the rectangle is

. As illustrated in Fig. 14, it implies that there
exists an infinite vacant component in the Poisson Boolean

model driven by the primary

receivers10. By recalling the known results in Section V-A-II,
we thus conclude that for all

10This technique used here can also be applied to the case when � � � ,
where only the minimum distance from all the primary receiver to the bar be-
tween � and � needs to be recomputed.
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Fig. 15. One edge �� � � � in the infinite path.

Let , then it yields

The other term in the upper bound is obtained
by applying the same argument to the Poisson Boolean model
driven by the primary transmitters.

D. Proof of Theorem 3

Consider the connected component containing
an arbitrarily chosen secondary user . Assuming that

, we construct a branching process as follows.
Notice that if , then must see an opportunity, i.e.,

is true. Call the initial point (or
0-th generation) of the branching process. Then the children
of (i.e., the first generation of the branching process) are
secondary users which satisfy the following two conditions:

i) it is within distance of , where is the transmission
range of secondary users;

ii) there exist neither any primary receiver within distance
of the secondary user nor any primary transmitter within
distance of the secondary user.

The -th generation of the branching process is ob-
tained similarly and these children are connected to their par-
ents in the -th generation of the branching process via
bidirectional links. Obviously, all the secondary users in are
counted in the constructed branching process model. But some
of them may probably be counted more than once, since we do
not exclude the previous generations (including generation
0) when we consider the -th generation. Thus, this branching
process gives us an upper bound on the number of secondary
users in . It follows that if the branching process does not
grow to infinity wpp., then there does not exist an infinite con-
nected component a.s. in , due to the stationarity
of the heterogeneous network model. Since the conditional av-
erage degree is the average number of offspring for every gen-
eration, the necessary condition follows immediately from the
classic theorem for branching processes11 [1, Theorem 2.1.1].

11The lower bound on the conditional average degree can be improved by
constructing a multi-type branching process. Specifically, when we consider the
children of a secondary user, we categorize them into different types based on
their distances from the secondary user. A similar construction has been used
to obtain the lower bound on the critical density of Poisson Boolean models [1,
Sec. 3.9]. This multi-type branching process is, however, difficult to analyze and
requires substantial further investigation.

E. Proof of Theorem 4

From the construction of the dependent site-percolation
model , we know that the existence of an infinite occupied
component in implies the existence of an infinite connected
component in . Then in order to obtain a sufficient
condition for the connectivity of the secondary network, it
suffices to find a sufficient condition for the existence of an
infinite occupied component in .

Let be the probability that one site is occupied. Then based
on the definition of the upper critical probability of , we
have that if , an infinite occupied component containing
the origin exists in wpp. It implies that if , there exists
an infinite connected component in the secondary network wpp.
Since the event that there exists an infinite connected component
in the secondary network is invariant under the group of shift
transformations, it follows from the ergodicity of the heteroge-
neous network model (see Lemma 1) that if , there exists
an infinite connected component in the secondary network a.s.

Let denote the event that there exist exactly sec-
ondary users in the associated dashed square of a site and
let denote the event that the secondary
user sees an opportunity. Then based on the definition of oc-
cupied site in , we obtain a lower bound on as follows:

In the last step, has been
obtained by setting the distance in the expression for the
probability of an unidirectional opportunity between two sec-
ondary users with distance apart given in [16, Proposition 1].

VI. CONCLUSION AND FUTURE DIRECTIONS

We have studied the connectivity of a large-scale ad hoc het-
erogeneous wireless network in terms of the occurrence of the
percolation phenomenon. We have introduced the concept of
connectivity region to specify the dependency of connectivity
on the density of the secondary users and the traffic load of
the primary users. We have shown several basic properties of
the connectivity region: the contiguity of the region, the mono-
tonicity of the boundary and the uniqueness of the infinite con-
nected component. We have analytically characterized the crit-
ical density of the secondary users and the critical density of
the primary transmitters; they jointly specify the profile of the
connectivity region. We have also established a necessary and a
sufficient condition for connectivity, which give an outer and an
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Fig. 16. Illustration of � ��� � � � � (the common area of two circles with radii
� and � and centers � apart), � ��� � � � � (the union area of two circles with
radii � and � and cents � apart) and � ��� �� � � �� � � (the intersection area
between one circle with radius � and the union of the two identical circles
with radii � ).

inner bound, respectively, on the connectivity region. Further-
more, by examining the impacts of the secondary users’ trans-
mission power on the connectivity region and on the conditional
average degree of a secondary user, we have demonstrated the
tradeoff between proximity and spectrum opportunity. In es-
tablishing these results, we have used techniques and theories
in continuum percolation, including the coupling argument, er-
godic theory, the discretization technique, and an approximation
using a branching process.

To highlight the interaction between the primary users and the
secondary users in a heterogeneous network, we have ignored
the fading effect and the mutual interference between secondary
users. If we take into account these factors, then the received
signal to interference-plus-noise ratios at two secondary users
will replace the distance between them in condition (C1) for the
existence of a communication link between them. This will re-
sult in a random connection model (RCM) with correlated links,
where the correlation between links is due to the mutual inter-
ference and condition (C2) on the presence of the bidirectional
opportunity. There will be a tradeoff between proximity and mu-
tual interference in addition to the tradeoff between proximity
and opportunity and the combination of these two tradeoffs will
complicate the characterization of the connectivity of the sec-
ondary network. But since the RCM shares several basic prop-
erties (e.g., ergodicity and existence of the critical density) with
the Boolean model used in this paper, we expect that most of the
results established here (e.g., connectivity region, critical den-
sities) can be extended to the RCM.

APPENDIX A
EXPRESSION FOR CONDITIONAL AVERAGE DEGREE

An expression for the conditional average degree of a sec-
ondary user is presented in the following proposition.

Proposition 1: Let and be the density of secondary
users and primary transmitters. Let and be the interfer-
ence range of the secondary and primary users and and
the transmission range of the secondary and primary users. Let

denote the probability of a bidirectional
opportunity between and conditioned on the event that
sees an opportunity. Then the conditional average degree of a
secondary user is given by

(A1)

where

the common area of two circles with radii and
and centers apart [see Fig. 16(a)] and is the

union of two circles with radii and and centers apart [see
Fig. 16(b)]. is the intersection area between
one circle with radius and the union of the two circles with
both radii [see Fig. 16(c)]. For , the two
identical circles are centered apart and the other circle is cen-
tered at , where the middle point of the centers of the two
identical circles is chosen to be the origin .

Expressions for and can be ob-
tained in explicit form, which can be found in [1, Appendix A].
The expression for depends on the expres-
sion for the common area of three circles which is tedious and
is given in [26]. By applying the basic property of the exponen-
tial function to (A1), we can easily show that is a strictly
decreasing function of .

Proof: Let denote the event that there exist exactly
neighbors of a secondary user . We thus have the first equation
shown at the bottom of the next page.

When , it is obvious that . When , let
be a neighbor of and an indicator function for such

that if occurs and
otherwise. Then by considering the statistical independence

and equivalence of the secondary users, we have the second
equation shown at the bottom of the next page. It follows that
we get (A2), as shown at the bottom of the next page.

According to the definition of spectrum opportunity,
can be obtained by setting

the distance in the expression for the probability of a
unidirectional opportunity between two secondary users with
distance d apart given in Proposition 1 in [16].

(A3)
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Next, we derive the expression for the probability
of a bidirectional opportunity, i.e.,

, which depends
on the location of only through its distance to . Since
is uniformly distributed within distance of , the density
function of the distance between and is given by
for . In this case, the probability of a bidirectional
opportunity can be written as shown in (A4), also shown at
the bottom of the page, where the integrand can be written as
shown in (A5), at the bottom of the page.

Next, we compute the two probabilities in (A5) one by one.
Since the primary receivers admit a Poisson point process with
density , we have

(A6)

where is the common area of two circles with both
radii and centers apart [see Fig. 16(a)].

(A2)

(A4)

(A5)
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(A7)

(A8)

Let denote the Poisson point process formed by
primary transmitters. If we remove from primary trans-
mitters whose receivers are within distance of or ,
then it follows from the Coloring Theorem [17, Chapter 5] that
all the remaining primary transmitters form another Poisson
point process with density , where

is the area of the circle with radius and
centered at intersecting the two circles both with radii

and centers apart [see Fig. 16(c)]. We thus have (A7), at
the top of the page. where is the union of two
circles with both radii and centers apart [see Fig. 16(b)].

Substitute (A6), (A7) into (A5), we have (A8), as shown at
the top of the page. The expression for the conditional average
degree thus follows by plugging (A8) into (A4) and then (A3),
(A4) into (A2).

APPENDIX B
PROOF OF COROLLARY 3

From [1, Appendix A] and Figs. 16(b) and (c), we know that
when

(B1)

(B2)

Substitute (B1) and (B2) into (A1), we have

(B3)
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Plugging the expression for [1, Appendix A] into
(B3) yields the equation shown at the top of the previous page.

By applying the inequality for ,
we have the equation at the top of the previous page, where we
have assumed that under the disk signal
propagation and interference model. Since , we
arrive at Corollary 3.
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